occurrence module

occurrence module API:

  • search
  • get
  • get_verbatim
  • get_fragment
  • count
  • count_basisofrecord
  • count_year
  • count_datasets
  • count_countries
  • count_schema
  • count_publishingcountries
  • download
  • download_meta
  • download_list
  • download_get

Example usage:

from pygbif import occurrences as occ
occ.search(taxonKey = 3329049)
occ.get(key = 252408386)
occ.count(isGeoreferenced = True)
occ.download('basisOfRecord = LITERATURE')
occ.download('taxonKey = 3119195')
occ.download('decimalLatitude > 50')
occ.download_list(user = "sckott", limit = 5)
occ.download_meta(key = "0000099-140929101555934")
occ.download_get("0000066-140928181241064")

occurrences API

occurrences.search(taxonKey=None, repatriated=None, kingdomKey=None, phylumKey=None, classKey=None, orderKey=None, familyKey=None, genusKey=None, subgenusKey=None, scientificName=None, country=None, publishingCountry=None, hasCoordinate=None, typeStatus=None, recordNumber=None, lastInterpreted=None, continent=None, geometry=None, recordedBy=None, basisOfRecord=None, datasetKey=None, eventDate=None, catalogNumber=None, year=None, month=None, decimalLatitude=None, decimalLongitude=None, elevation=None, depth=None, institutionCode=None, collectionCode=None, hasGeospatialIssue=None, issue=None, q=None, spellCheck=None, mediatype=None, limit=300, offset=0, establishmentMeans=None, facet=None, facetMincount=None, facetMultiselect=None, **kwargs)

Search GBIF occurrences

Parameters:
  • taxonKey – [int] A GBIF occurrence identifier
  • q – [str] Simple search parameter. The value for this parameter can be a simple word or a phrase.
  • spellCheck – [bool] If True ask GBIF to check your spelling of the value passed to the search parameter. IMPORTANT: This only checks the input to the search parameter, and no others. Default: False
  • repatriated – [str] Searches for records whose publishing country is different to the country where the record was recorded in
  • kingdomKey – [int] Kingdom classification key
  • phylumKey – [int] Phylum classification key
  • classKey – [int] Class classification key
  • orderKey – [int] Order classification key
  • familyKey – [int] Family classification key
  • genusKey – [int] Genus classification key
  • subgenusKey – [int] Subgenus classification key
  • scientificName – [str] A scientific name from the GBIF backbone. All included and synonym taxa are included in the search.
  • datasetKey – [str] The occurrence dataset key (a uuid)
  • catalogNumber – [str] An identifier of any form assigned by the source within a physical collection or digital dataset for the record which may not unique, but should be fairly unique in combination with the institution and collection code.
  • recordedBy – [str] The person who recorded the occurrence.
  • collectionCode – [str] An identifier of any form assigned by the source to identify the physical collection or digital dataset uniquely within the text of an institution.
  • institutionCode – [str] An identifier of any form assigned by the source to identify the institution the record belongs to. Not guaranteed to be que.
  • country – [str] The 2-letter country code (as per ISO-3166-1) of the country in which the occurrence was recorded. See here http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
  • basisOfRecord

    [str] Basis of record, as defined in our BasisOfRecord enum here http://gbif.github.io/gbif-api/apidocs/org/gbif/api/vocabulary/BasisOfRecord.html Acceptable values are:

    • FOSSIL_SPECIMEN An occurrence record describing a fossilized specimen.
    • HUMAN_OBSERVATION An occurrence record describing an observation made by one or more people.
    • LITERATURE An occurrence record based on literature alone.
    • LIVING_SPECIMEN An occurrence record describing a living specimen, e.g.
    • MACHINE_OBSERVATION An occurrence record describing an observation made by a machine.
    • OBSERVATION An occurrence record describing an observation.
    • PRESERVED_SPECIMEN An occurrence record describing a preserved specimen.
    • UNKNOWN Unknown basis for the record.
  • eventDate – [date] Occurrence date in ISO 8601 format: yyyy, yyyy-MM, yyyy-MM-dd, or MM-dd. Supports range queries, smaller,larger (e.g., 1990,1991, whereas 1991,1990 wouldn’t work)
  • year – [int] The 4 digit year. A year of 98 will be interpreted as AD 98. Supports range queries, smaller,larger (e.g., 1990,1991, whereas 1991,1990 wouldn’t work)
  • month – [int] The month of the year, starting with 1 for January. Supports range queries, smaller,larger (e.g., 1,2, whereas 2,1 wouldn’t work)
  • q – [str] Query terms. The value for this parameter can be a simple word or a phrase.
  • decimalLatitude – [float] Latitude in decimals between -90 and 90 based on WGS 84. Supports range queries, smaller,larger (e.g., 25,30, whereas 30,25 wouldn’t work)
  • decimalLongitude – [float] Longitude in decimals between -180 and 180 based on WGS 84. Supports range queries (e.g., -0.4,-0.2, whereas -0.2,-0.4 wouldn’t work).
  • publishingCountry – [str] The 2-letter country code (as per ISO-3166-1) of the country in which the occurrence was recorded.
  • elevation – [int/str] Elevation in meters above sea level. Supports range queries, smaller,larger (e.g., 5,30, whereas 30,5 wouldn’t work)
  • depth – [int/str] Depth in meters relative to elevation. For example 10 meters below a lake surface with given elevation. Supports range queries, smaller,larger (e.g., 5,30, whereas 30,5 wouldn’t work)
  • geometry – [str] Searches for occurrences inside a polygon described in Well Known Text (WKT) format. A WKT shape written as either POINT, LINESTRING, LINEARRING POLYGON, or MULTIPOLYGON. Example of a polygon: ((30.1 10.1, 20, 20 40, 40 40, 30.1 10.1)) would be queried as http://bit.ly/1BzNwDq.
  • hasGeospatialIssue – [bool] Includes/excludes occurrence records which contain spatial issues (as determined in our record interpretation), i.e. hasGeospatialIssue=TRUE returns only those records with spatial issues while hasGeospatialIssue=FALSE includes only records without spatial issues. The absence of this parameter returns any record with or without spatial issues.
  • issue – [str] One or more of many possible issues with each occurrence record. See Details. Issues passed to this parameter filter results by the issue.
  • hasCoordinate – [bool] Return only occurence records with lat/long data (true) or all records (false, default).
  • typeStatus – [str] Type status of the specimen. One of many options. See ?typestatus
  • recordNumber – [int] Number recorded by collector of the data, different from GBIF record number. See http://rs.tdwg.org/dwc/terms/#recordNumber} for more info
  • lastInterpreted – [date] Date the record was last modified in GBIF, in ISO 8601 format: yyyy, yyyy-MM, yyyy-MM-dd, or MM-dd. Supports range queries, smaller,larger (e.g., 1990,1991, whereas 1991,1990 wouldn’t work)
  • continent – [str] Continent. One of africa, antarctica, asia, europe, north_america (North America includes the Caribbean and reachies down and includes Panama), oceania, or south_america
  • fields – [str] Default (all) returns all fields. minimal returns just taxon name, key, latitude, and longitude. Or specify each field you want returned by name, e.g. fields = c('name','latitude','elevation').
  • mediatype – [str] Media type. Default is NULL, so no filtering on mediatype. Options: NULL, MovingImage, Sound, and StillImage
  • limit – [int] Number of results to return. Default: 300
  • offset – [int] Record to start at. Default: 0
  • facet – [str] a character vector of length 1 or greater
  • establishmentMeans – [str] EstablishmentMeans, possible values include: INTRODUCED, INVASIVE, MANAGED, NATIVE, NATURALISED, UNCERTAIN
  • facetMincount – [int] minimum number of records to be included in the faceting results
  • facetMultiselect – [bool] Set to true to still return counts for values that are not currently filtered. See examples. Default: false
Returns:

A dictionary

Usage:

from pygbif import occurrences
occurrences.search(taxonKey = 3329049)

# Return 2 results, this is the default by the way
occurrences.search(taxonKey=3329049, limit=2)

# Instead of getting a taxon key first, you can search for a name directly
# However, note that using this approach (with `scientificName="..."`)
# you are getting synonyms too. The results for using `scientifcName` and
# `taxonKey` parameters are the same in this case, but I wouldn't be surprised if for some
# names they return different results
occurrences.search(scientificName = 'Ursus americanus')
from pygbif import species
key = species.name_backbone(name = 'Ursus americanus', rank='species')['usageKey']
occurrences.search(taxonKey = key)

# Search by dataset key
occurrences.search(datasetKey='7b5d6a48-f762-11e1-a439-00145eb45e9a', limit=20)

# Search by catalog number
occurrences.search(catalogNumber="49366", limit=20)
# occurrences.search(catalogNumber=["49366","Bird.27847588"], limit=20)

# Use paging parameters (limit and offset) to page. Note the different results
# for the two queries below.
occurrences.search(datasetKey='7b5d6a48-f762-11e1-a439-00145eb45e9a', offset=10, limit=5)
occurrences.search(datasetKey='7b5d6a48-f762-11e1-a439-00145eb45e9a', offset=20, limit=5)

# Many dataset keys
# occurrences.search(datasetKey=["50c9509d-22c7-4a22-a47d-8c48425ef4a7", "7b5d6a48-f762-11e1-a439-00145eb45e9a"], limit=20)

# Search by collector name
res = occurrences.search(recordedBy="smith", limit=20)
[ x['recordedBy'] for x in res['results'] ]

# Many collector names
# occurrences.search(recordedBy=["smith","BJ Stacey"], limit=20)

# Search for many species
splist = ['Cyanocitta stelleri', 'Junco hyemalis', 'Aix sponsa']
keys = [ species.name_suggest(x)[0]['key'] for x in splist ]
out = [ occurrences.search(taxonKey = x, limit=1) for x in keys ]
[ x['results'][0]['speciesKey'] for x in out ]

# Search - q parameter
occurrences.search(q = "kingfisher", limit=20)
## spell check - only works with the `search` parameter
### spelled correctly - same result as above call
occurrences.search(q = "kingfisher", limit=20, spellCheck = True)
### spelled incorrectly - stops with suggested spelling
occurrences.search(q = "kajsdkla", limit=20, spellCheck = True)
### spelled incorrectly - stops with many suggested spellings
###   and number of results for each
occurrences.search(q = "helir", limit=20, spellCheck = True)

# Search on latitidue and longitude
occurrences.search(decimalLatitude=50, decimalLongitude=10, limit=2)

# Search on a bounding box
## in well known text format
occurrences.search(geometry='POLYGON((30.1 10.1, 10 20, 20 40, 40 40, 30.1 10.1))', limit=20)
from pygbif import species
key = species.name_suggest(q='Aesculus hippocastanum')[0]['key']
occurrences.search(taxonKey=key, geometry='POLYGON((30.1 10.1, 10 20, 20 40, 40 40, 30.1 10.1))', limit=20)
## multipolygon
wkt = 'MULTIPOLYGON(((-123 38, -123 43, -116 43, -116 38, -123 38)),((-97 41, -97 45, -93 45, -93 41, -97 41)))'
occurrences.search(geometry = wkt, limit = 20)

# Search on country
occurrences.search(country='US', limit=20)
occurrences.search(country='FR', limit=20)
occurrences.search(country='DE', limit=20)

# Get only occurrences with lat/long data
occurrences.search(taxonKey=key, hasCoordinate=True, limit=20)

# Get only occurrences that were recorded as living specimens
occurrences.search(taxonKey=key, basisOfRecord="LIVING_SPECIMEN", hasCoordinate=True, limit=20)

# Get occurrences for a particular eventDate
occurrences.search(taxonKey=key, eventDate="2013", limit=20)
occurrences.search(taxonKey=key, year="2013", limit=20)
occurrences.search(taxonKey=key, month="6", limit=20)

# Get occurrences based on depth
key = species.name_backbone(name='Salmo salar', kingdom='animals')['usageKey']
occurrences.search(taxonKey=key, depth="5", limit=20)

# Get occurrences based on elevation
key = species.name_backbone(name='Puma concolor', kingdom='animals')['usageKey']
occurrences.search(taxonKey=key, elevation=50, hasCoordinate=True, limit=20)

# Get occurrences based on institutionCode
occurrences.search(institutionCode="TLMF", limit=20)

# Get occurrences based on collectionCode
occurrences.search(collectionCode="Floristic Databases MV - Higher Plants", limit=20)

# Get only those occurrences with spatial issues
occurrences.search(taxonKey=key, hasGeospatialIssue=True, limit=20)

# Search using a query string
occurrences.search(q="kingfisher", limit=20)

# Range queries
## See Detail for parameters that support range queries
### this is a range depth, with lower/upper limits in character string
occurrences.search(depth='50,100')

## Range search with year
occurrences.search(year='1999,2000', limit=20)

## Range search with latitude
occurrences.search(decimalLatitude='29.59,29.6')

# Search by specimen type status
## Look for possible values of the typeStatus parameter looking at the typestatus dataset
occurrences.search(typeStatus = 'allotype')

# Search by specimen record number
## This is the record number of the person/group that submitted the data, not GBIF's numbers
## You can see that many different groups have record number 1, so not super helpful
occurrences.search(recordNumber = 1)

# Search by last time interpreted: Date the record was last modified in GBIF
## The lastInterpreted parameter accepts ISO 8601 format dates, including
## yyyy, yyyy-MM, yyyy-MM-dd, or MM-dd. Range queries are accepted for lastInterpreted
occurrences.search(lastInterpreted = '2014-04-01')

# Search by continent
## One of africa, antarctica, asia, europe, north_america, oceania, or south_america
occurrences.search(continent = 'south_america')
occurrences.search(continent = 'africa')
occurrences.search(continent = 'oceania')
occurrences.search(continent = 'antarctica')

# Search for occurrences with images
occurrences.search(mediatype = 'StillImage')
occurrences.search(mediatype = 'MovingImage')
x = occurrences.search(mediatype = 'Sound')
[z['media'] for z in x['results']]

# Query based on issues
occurrences.search(taxonKey=1, issue='DEPTH_UNLIKELY')
occurrences.search(taxonKey=1, issue=['DEPTH_UNLIKELY','COORDINATE_ROUNDED'])
# Show all records in the Arizona State Lichen Collection that cant be matched to the GBIF
# backbone properly:
occurrences.search(datasetKey='84c0e1a0-f762-11e1-a439-00145eb45e9a', issue=['TAXON_MATCH_NONE','TAXON_MATCH_HIGHERRANK'])

# If you pass in an invalid polygon you get hopefully informative errors
### the WKT string is fine, but GBIF says bad polygon
wkt = 'POLYGON((-178.59375 64.83258989321493,-165.9375 59.24622380205539,
-147.3046875 59.065977905449806,-130.78125 51.04484764446178,-125.859375 36.70806354647625,
-112.1484375 23.367471303759686,-105.1171875 16.093320185359257,-86.8359375 9.23767076398516,
-82.96875 2.9485268155066175,-82.6171875 -14.812060061226388,-74.8828125 -18.849111862023985,
-77.34375 -47.661687803329166,-84.375 -49.975955187343295,174.7265625 -50.649460483096114,
179.296875 -42.19189902447192,-176.8359375 -35.634976650677295,176.8359375 -31.835565983656227,
163.4765625 -6.528187613695323,152.578125 1.894796132058301,135.703125 4.702353722559447,
127.96875 15.077427674847987,127.96875 23.689804541429606,139.921875 32.06861069132688,
149.4140625 42.65416193033991,159.2578125 48.3160811030533,168.3984375 57.019804336633165,
178.2421875 59.95776046458139,-179.6484375 61.16708631440347,-178.59375 64.83258989321493))'
occurrences.search(geometry = wkt)

# Faceting
## return no occurrence records with limit=0
x = occurrences.search(facet = "country", limit = 0)
x['facets']

## also return occurrence records
x = occurrences.search(facet = "establishmentMeans", limit = 10)
x['facets']
x['results']

## multiple facet variables
x = occurrences.search(facet = ["country", "basisOfRecord"], limit = 10)
x['results']
x['facets']
x['facets']['country']
x['facets']['basisOfRecord']
x['facets']['basisOfRecord']['count']

## set a minimum facet count
x = occurrences.search(facet = "country", facetMincount = 30000000L, limit = 0)
x['facets']

## paging per each faceted variable
### do so by passing in variables like "country" + "_facetLimit" = "country_facetLimit"
### or "country" + "_facetOffset" = "country_facetOffset"
x = occurrences.search(
  facet = ["country", "basisOfRecord", "hasCoordinate"],
  country_facetLimit = 3,
  basisOfRecord_facetLimit = 6,
  limit = 0
)
x['facets']

# requests package options
## There's an acceptable set of requests options (['timeout', 'cookies', 'auth',
## 'allow_redirects', 'proxies', 'verify', 'stream', 'cert']) you can pass
## in via **kwargs, e.g., set a timeout
x = occurrences.search(timeout = 1)
occurrences.get(key, **kwargs)

Gets details for a single, interpreted occurrence

Parameters:key – [int] A GBIF occurrence key
Returns:A dictionary, of results

Usage:

from pygbif import occurrences
occurrences.get(key = 1258202889)
occurrences.get(key = 1227768771)
occurrences.get(key = 1227769518)
occurrences.get_verbatim(key, **kwargs)

Gets a verbatim occurrence record without any interpretation

Parameters:key – [int] A GBIF occurrence key
Returns:A dictionary, of results

Usage:

from pygbif import occurrences
occurrences.get_verbatim(key = 1258202889)
occurrences.get_verbatim(key = 1227768771)
occurrences.get_verbatim(key = 1227769518)
occurrences.get_fragment(key, **kwargs)

Get a single occurrence fragment in its raw form (xml or json)

Parameters:key – [int] A GBIF occurrence key
Returns:A dictionary, of results

Usage:

from pygbif import occurrences
occurrences.get_fragment(key = 1052909293)
occurrences.get_fragment(key = 1227768771)
occurrences.get_fragment(key = 1227769518)
occurrences.count(taxonKey=None, basisOfRecord=None, country=None, isGeoreferenced=None, datasetKey=None, publishingCountry=None, typeStatus=None, issue=None, year=None, **kwargs)

Returns occurrence counts for a predefined set of dimensions

Parameters:
  • taxonKey – [int] A GBIF occurrence identifier
  • basisOfRecord – [str] A GBIF occurrence identifier
  • country – [str] A GBIF occurrence identifier
  • isGeoreferenced – [bool] A GBIF occurrence identifier
  • datasetKey – [str] A GBIF occurrence identifier
  • publishingCountry – [str] A GBIF occurrence identifier
  • typeStatus – [str] A GBIF occurrence identifier
  • issue – [str] A GBIF occurrence identifier
  • year – [int] A GBIF occurrence identifier
Returns:

dict

Usage:

from pygbif import occurrences
occurrences.count(taxonKey = 3329049)
occurrences.count(country = 'CA')
occurrences.count(isGeoreferenced = True)
occurrences.count(basisOfRecord = 'OBSERVATION')
occurrences.count_basisofrecord(**kwargs)

Lists occurrence counts by basis of record.

Returns:dict

Usage:

from pygbif import occurrences
occurrences.count_basisofrecord()
occurrences.count_year(year, **kwargs)

Lists occurrence counts by year

Parameters:year – [int] year range, e.g., 1990,2000. Does not support ranges like asterisk,2010
Returns:dict

Usage:

from pygbif import occurrences
occurrences.count_year(year = '1990,2000')
occurrences.count_datasets(taxonKey=None, country=None, **kwargs)

Lists occurrence counts for datasets that cover a given taxon or country

Parameters:
  • taxonKey – [int] Taxon key
  • country – [str] A country, two letter code
Returns:

dict

Usage:

from pygbif import occurrences
occurrences.count_datasets(country = "DE")
occurrences.count_countries(publishingCountry, **kwargs)

Lists occurrence counts for all countries covered by the data published by the given country

Parameters:publishingCountry – [str] A two letter country code
Returns:dict

Usage:

from pygbif import occurrences
occurrences.count_countries(publishingCountry = "DE")
occurrences.count_schema(**kwargs)

List the supported metrics by the service

Returns:dict

Usage:

from pygbif import occurrences
occurrences.count_schema()
occurrences.count_publishingcountries(country, **kwargs)

Lists occurrence counts for all countries that publish data about the given country

Parameters:country – [str] A country, two letter code
Returns:dict

Usage:

from pygbif import occurrences
occurrences.count_publishingcountries(country = "DE")
occurrences.download(queries, user=None, pwd=None, email=None, pred_type='and')

Spin up a download request for GBIF occurrence data.

Parameters:
  • queries (str or list) – One or more of query arguments to kick of a download job. See Details.
  • pred_type – (character) One of equals (=), and (&), or` (|), lessThan (<), lessThanOrEquals (<=), greaterThan (>), greaterThanOrEquals (>=), in, within, not (!), like
  • user – (character) User name within GBIF’s website. Required. Set in your env vars with the option GBIF_USER
  • pwd – (character) User password within GBIF’s website. Required. Set in your env vars with the option GBIF_PWD
  • email – (character) Email address to recieve download notice done email. Required. Set in your env vars with the option GBIF_EMAIL

Argument passed have to be passed as character (e.g., country = US), with a space between key (country), operator (=), and value (US). See the type parameter for possible options for the operator. This character string is parsed internally.

Acceptable arguments to ... (args) are:

  • taxonKey = TAXON_KEY
  • scientificName = SCIENTIFIC_NAME
  • country = COUNTRY
  • publishingCountry = PUBLISHING_COUNTRY
  • hasCoordinate = HAS_COORDINATE
  • hasGeospatialIssue = HAS_GEOSPATIAL_ISSUE
  • typeStatus = TYPE_STATUS
  • recordNumber = RECORD_NUMBER
  • lastInterpreted = LAST_INTERPRETED
  • continent = CONTINENT
  • geometry = GEOMETRY
  • basisOfRecord = BASIS_OF_RECORD
  • datasetKey = DATASET_KEY
  • eventDate = EVENT_DATE
  • catalogNumber = CATALOG_NUMBER
  • year = YEAR
  • month = MONTH
  • decimalLatitude = DECIMAL_LATITUDE
  • decimalLongitude = DECIMAL_LONGITUDE
  • elevation = ELEVATION
  • depth = DEPTH
  • institutionCode = INSTITUTION_CODE
  • collectionCode = COLLECTION_CODE
  • issue = ISSUE
  • mediatype = MEDIA_TYPE
  • recordedBy = RECORDED_BY
  • repatriated = REPATRIATED

See the API docs http://www.gbif.org/developer/occurrence#download for more info, and the predicates docs http://www.gbif.org/developer/occurrence#predicates

GBIF has a limit of 12,000 characters for download queries - so if you’re download request is really, really long and complex, consider breaking it up into multiple requests by one factor or another.

Returns:A dictionary, of results

Usage:

from pygbif import occurrences as occ

occ.download('basisOfRecord = LITERATURE')
occ.download('taxonKey = 3119195')
occ.download('decimalLatitude > 50')
occ.download('elevation >= 9000')
occ.download('decimalLatitude >= 65')
occ.download('country = US')
occ.download('institutionCode = TLMF')
occ.download('catalogNumber = Bird.27847588')

res = occ.download(['taxonKey = 7264332', 'hasCoordinate = TRUE'])

# pass output to download_meta for more information
occ.download_meta(occ.download('decimalLatitude > 75'))

# Multiple queries
gg = occ.download(['decimalLatitude >= 65',
                  'decimalLatitude <= -65'], type='or')
gg = occ.download(['depth = 80', 'taxonKey = 2343454'],
                  type='or')

# Repratriated data for Costa Rica
occ.download(['country = CR', 'repatriated = true'])
occurrences.download_meta(key, **kwargs)

Retrieves the occurrence download metadata by its unique key. Further named arguments passed on to requests.get can be included as additional arguments

Parameters:key – [str] A key generated from a request, like that from download

Usage:

from pygbif import occurrences as occ
occ.download_meta(key = "0003970-140910143529206")
occ.download_meta(key = "0000099-140929101555934")
occurrences.download_list(user=None, pwd=None, limit=20, offset=0)

Lists the downloads created by a user.

Parameters:
  • user – [str] A user name, look at env var GBIF_USER first
  • pwd – [str] Your password, look at env var GBIF_PWD first
  • limit – [int] Number of records to return. Default: 20
  • offset – [int] Record number to start at. Default: 0

Usage:

from pygbif import occurrences as occ
occ.download_list(user = "sckott")
occ.download_list(user = "sckott", limit = 5)
occ.download_list(user = "sckott", offset = 21)
occurrences.download_get(key, path='.', **kwargs)

Get a download from GBIF.

Parameters:
  • key – [str] A key generated from a request, like that from download
  • path – [str] Path to write zip file to. Default: ".", with a .zip appended to the end.
  • kwargs – Further named arguments passed on to requests.get

Downloads the zip file to a directory you specify on your machine. The speed of this function is of course proportional to the size of the file to download, and affected by your internet connection speed.

This function only downloads the file. To open and read it, see https://github.com/BelgianBiodiversityPlatform/python-dwca-reader

Usage:

from pygbif import occurrences as occ
occ.download_get("0000066-140928181241064")
occ.download_get("0003983-140910143529206")